Join Our Discord (630+ Members)

Slovenian Male TTS Model Vits Encoding Trained on Cv Dataset at 22050Hz

Slovenian (slovenščina) male text-to-speech model trained at 22050 Hz and is available to synthesize the Slovenian language.

Follow AI Models on Google News

An easy & free way to support AI Models is to follow our google news feed! More followers will help us reach a wider audience!

Google News: AI Models

Subscribe or Contribute

Slovenian (slovenščina) male text-to-speech model trained at 22050 Hz and is available to synthesize the Slovenian language.

Model Description

This Slovenian (slovenščina) male text-to-speech model is trained on the the Common Voice dataset at 22050 Hz and is available to synthesize the Slovenian language. The model is based on the VITS encoder.

pip install tts
tts --text "Hello, world!" --model_name tts_models/sl/cv/vits

Voice Samples

default (M)

Slovenian (slovenščina)

Slovenian is a South Slavic language spoken primarily in Slovenia. It is closely related to Croatian and Serbian. Slovenian has a rich literary tradition and a complex grammar with noun declensions and verb conjugations. It uses the Latin alphabet with diacritic marks to represent specific sounds. Slovenian is known for its unique phonetic properties, including the preservation of dual number forms.

CV Dataset

The CV dataset is a speech dataset that is specifically designed for computer vision tasks, such as lip-reading or audio-visual analysis. It contains audio samples synchronized with visual data.

VITS (VQ-VAE-Transformer)

VITS, also known as VQ-VAE-Transformer, is an advanced technique used for training audio models. It combines different components to create powerful models that can understand and generate human-like speech. VITS works by breaking down audio into tiny pieces called vectors, which are like puzzle pieces that represent different parts of the sound. These vectors are then put together using a special algorithm that helps the model learn patterns and understand the structure of the audio. It’s similar to how we put together jigsaw puzzles to form a complete picture. With VITS, the model can not only recognize and understand different speech sounds but also generate new sounds that sound very similar to human speech. This technology has a wide range of applications, from creating realistic voice assistants to helping people with speech impairments communicate more effectively.

Related Posts

Ganyu (Reina Ueda) AI Voice

Ganyu (Reina Ueda) AI Voice

Experience AI Ganyu’s incredible range of music styles and languages with our unique collection of songs.

German male TTS Model tacotron2 DCA Encoding Trained on thorsten Dataset at 22050Hz

German male TTS Model tacotron2 DCA Encoding Trained on thorsten Dataset at 22050Hz

German (Deutsch) male text-to-speech model trained at 22050 Hz and is available to synthesize the German language.

George Michael AI Voice

George Michael AI Voice

Introducing AI George Michael’s collection of songs produced by a community of AI enthusiasts.